Compuesto de veinte octaedros con libertad de rotación

poliedro compuesto
Compuesto de veinte octaedros con libertad de rotación
Tipo Compuesto uniforme
Índice UC13
Poliedros 20 octaedros
Caras 40+120 triángulos
Aristas 240
Vértices 120
Grupo de simetría Icosaédrico (Ih)
Subgrupo restringido a un elemento Rotación impropia de 6 lóbulos (S6)

El compuesto de veinte octaedros con libertad de rotación[1]​ es un poliedro compuesto uniforme. Está formado por una disposición simétrica de 20 octaedros, considerados como antiprismas triangulares. Se puede construir superponiendo dos copias del compuesto de 10 octaedros UC16 y, para cada par de octaedros resultante, rotando cada octaedro del par en un ángulo θ igual y opuesto.

Cuando θ es cero o 60 grados, los octaedros coinciden en pares, generándose dos copias superpuestas de los compuestos de 10 octaedros UC16 y UC15 respectivamente. Cuando:

los octaedros (con distintos ejes de rotación) coinciden en cuatro conjuntos, dando como resultado el compuesto de cinco octaedros. Cuando

los vértices coinciden en pares, dando el compuesto de veinte octaedros (sin libertad de rotación).

Coordenadas cartesianas

editar

Las coordenadas cartesianas de los vértices de esta forma compuesta son todas las permutaciones cíclicas de:

 

donde τ = (1 + 5)/2 es el número áureo (también denominado φ).

Galería

editar

Véase también

editar

Referencias

editar
  1. Skilling, John (1976), «Uniform Compounds of Uniform Polyhedra», Mathematical Proceedings of the Cambridge Philosophical Society 79 (3): 447-457, MR 0397554, doi:10.1017/S0305004100052440 ..

Enlaces externos

editar