Usuario:Swazmo/25
00 ᐧ 01 ᐧ 02 ᐧ 03 ᐧ 04 ᐧ 05 ᐧ 06 ᐧ 07 ᐧ 08 ᐧ 09 ᐧ 10 ᐧ 11 ᐧ 12 ᐧ 13 ᐧ 14 ᐧ 15 ᐧ 16 ᐧ 17 ᐧ 18 ᐧ 19 ᐧ 20 ᐧ 21 ᐧ 22 ᐧ 23 ᐧ 24 ᐧ 25 ᐧ 26 ᐧ 27 ᐧ 28 ᐧ 29 ᐧ 30 ᐧ 31 ᐧ 32 ᐧ 33 ᐧ 34 ᐧ 35 | |||||||
00 ᐧ 01 ᐧ 02 ᐧ 03 ᐧ 04 ᐧ 05 ᐧ 06 ᐧ 07 ᐧ 08 ᐧ 09 ᐧ 10 ᐧ 11 ᐧ 12 ᐧ 13 ᐧ 14 ᐧ 15 ᐧ 16 ᐧ 17 ᐧ 18 ᐧ 19 ᐧ 20 ᐧ 21 ᐧ 22 ᐧ 23 ᐧ 24 ᐧ 25 |
|||||||
00 ᐧ 01 ᐧ 02 ᐧ 03 ᐧ 04 ᐧ 05 ᐧ 06 ᐧ 07 ᐧ 08 ᐧ 09 ᐧ 10 ᐧ 11 ᐧ 12 ᐧ 13 ᐧ 14 ᐧ 15 ᐧ 16 ᐧ 17 ᐧ 18 ᐧ 19 ᐧ 20 ᐧ 21 ᐧ 22 ᐧ 23 ᐧ 24 ᐧ 25 |
|||||||
vector ᐧ cologneblue ᐧ minerva ᐧ modern ᐧ monobook ᐧ timeless ᐧ common ᐧ global |
vector ᐧ cologneblue ᐧ minerva ᐧ modern ᐧ monobook ᐧ timeless ᐧ common ᐧ global |
Récords mundiales
editarLos siguientes récords de speedcubing son los oficiales aprobados por la World Cube Association.[1]
Evento | Tipo | Resultado (min:s) |
Persona | Competición | Detalles del resultado (min:s) |
---|---|---|---|---|---|
2×2×2 | Single | 00:00.58 | Rami Sbahi | Canadian Open 2015 | |
Average | 00:01.55 | Rami Sbahi | Canadian Open 2015 | 00:00.58/ 00:01.46 / 00:01.81 / 00:01.37 / 00:01.67 | |
3×3×3 | Single | 00:05.25 | Collin Burns | Doylestown Spring 2015 | |
Average | 00:06.54 | Feliks Zemdegs | Melbourne Cube Day 2013 | 00:06.91 / 00:06.41 / 00:06.25 / 00:07.30 / 00:06.31 | |
4×4×4 | Single | 00:21.97 | Sebastian Weyer | Euro 2014 | |
Average | 00:26.03 | Sebastian Weyer | German Nationals 2014 | 00:26.06 / 00:27.08 / 00:26.36 / 00:25.68 / 00:24.86 | |
5×5×5 | Single | 00:48.42 | Feliks Zemdegs | US Nationals 2014 | |
Average | 00:54.20 | Feliks Zemdegs | Niddrie 2014 | 00:52.88 / 00:54.33 / 00:55.18 / 00:53.08 / 00:56.80 | |
6×6×6 | Single | 01:40.86 | Kevin Hays | Vancouver Summer 2013 | |
Average | 01:51.30 | Kevin Hays | Vancouver Summer 2013 | 01:40.86 / 02:01.94 / 01:51.11 | |
7×7×7 | Single | 02:23.55 | Feliks Zemdegs | World Championship 2015 | |
Average | 02:33.73 | Feliks Zemdegs | World Championship 2015 | 02:33.40 / 02:44.25 / 02:23.55 | |
Megaminx | Single | 00:37.58 | Yu Da-Hyun | Spring Comes 2015 | |
Average | 00:42.89 | Yu Da-Hyun | Asian Championship 2014 | 00:47.53 / 00:43.88 / 00:40.16 / 00:43.15 / 00:41.65 | |
Pyraminx | Single | 00:01.36 | Oscar Roth Andersen | Danish Special 2013 | |
Average | 00:02.56 | Drew Brads | Virginia Open Fall 2014 | 00:02.46 / 00:02.65 / 00:02.58 / 00:09.19 / 00:01.96 | |
Square-1 | Single | 00:06.96 | Bingliang Li | Guangzhou Wushan Open 2014 | |
Average | 00:10.21 | Bingliang Li | Guangzhou Wushan Open 2014 | 00:09.36 / 00:11.43 / 00:06.96 / 00:09.83 / 00:12.06 | |
Rubik's clock | Single | 00:04.80 | Evan Liu | Xi'an Cherry Blossom 2015 | |
Average | 00:05.94 | Evan Liu | Xi'an Cherry Blossom 2015 | 00:06.34 / 00:05.84 / 00:07.66 / 00:05.63 / 00:04.80 | |
Skewb | Single | 00:01.81 | Jonatan Kłosko | Santa Claus Cube Race 2014 | |
Average | 00:03.10 | Jayden McNeill | Niddrie 2014 | 00:06.34 / 00:02.65 / 00:02.75 / 00:02.52 / 00:03.90 | |
3×3×3 Blindfolded (a ciegas) |
Single | 00:21.17 | Marcin Zalewski | PLS Szczecin 2014 | |
Average | 00:26.41 | Kaijun Lin | Guangzhou More Fun Site 2015 | 00:26.14 / 00:29.11 / 00:23.97 | |
4×4×4 Blindfolded (a ciegas) |
Single | 02:10.47 | Oliver Frost | Edinburgh Spring 2015 | |
5×5×5 Blindfolded (a ciegas) |
Single | 05:35.84 | Oliver Frost | Welcome Back to Guildford 2015 | |
3×3×3 Multiple Blindfolded |
Single | 41/41 | Marcin Kowalczyk | SLS Swierklany 2013 | 54:14.00 |
3×3×3 One-handed (con una mano) |
Single | 00:06.88 | Feliks Zemdegs | Canberra Autumn 2015 | |
Average | 00:10.87 | Antoine Cantin | Toronto Spring 2015 | 00:10.56 / 00:14.19 / 00:10.58 / 00:10.07 / 00:11.47 | |
3×3×3 With feet (con los pies) |
Single | 00:25.14 | Gabriel Pereira Campanha | Nova Odessa Open 2014 | |
Average | 00:29.96 | Jakub Kipa | Polish Open 2015 | 00:27.30 / 00:32.47 / 00:30.10 | |
3×3×3 Fewest moves |
Single | 20 | Tomoaki Okayama | Czech Open 2012 | |
Average | 25.00 | Sébastien Auroux | Velbert Easter Open 2014 | 27 / 27 / 21 | |
Vincent Sheu | US Nationals 2014 | 22 / 23 / 30 |
Canberra Distance
editarThe Canberra distance is a numerical measure of the distance between pairs of points in a vector space, introduced in 1966[2] and refined in 1967[3] by G. N. Lance and W. T. Williams. It is a weighted version of L₁ (Manhattan) distance.[4] The Canberra distance has been used as a metric for comparing ranked lists[4] and for intrusion detection in computer security.[5]
Definition
editarThe Canberra distance d between vectors p and q in an n-dimensional real vector space is given as follows:
where
are vectors.
The Canberra metric, Adkins form, divides the distance d by (n-Z) where Z is the number of attributes that are 0 for p and q.
Distancia Canberra La distancia de Canberra es una medida numérica de la distancia entre pares de puntos en un espacio vectorial, introducida en 1966 y refinada en 1967 por G. N. Lance y W. T. Williams. Es una versión ponderada de la distancia L₁ (Manhattan). La distancia de Canberra se ha utilizado como una métrica para comparar listas clasificadas y para la detección de intrusos en la seguridad informática.
Definición La distancia de Canberra d entre los vectores p y q en un espacio vectorial real n-dimensional se da como sigue:
{\ displaystyle d (\ mathbf {p}, \ mathbf {q}) = \ sum _ {i = 1} ^ {n} {\ frac {| p_ {i} -q_ {i} |} {| p_ { i} | + | q_ {i} |}}} dónde
{\ displaystyle \ mathbf {p} = (p_ {1}, p_ {2}, \ dots, p_ {n}) {\ text {y}} \ mathbf {q} = (q_ {1}, q_ {2 }, \ puntos, q_ {n})} son vectores
La métrica de Canberra, forma de Adkins, divide la distancia d por (n-Z) donde Z es el número de atributos que son 0 para p y q.
- ↑ http://www.worldcubeassociation.org/results/regions.php
- ↑ Lance, G. N.; Williams, W. T. (1966). «Computer programs for hierarchical polythetic classification ("similarity analysis").». Computer Journal 9 (1): 60-64. doi:10.1093/comjnl/9.1.60.
- ↑ Lance, G. N.; Williams, W. T. (1967). «Mixed-data classificatory programs I.) Agglomerative Systems». Australian Computer Journal: 15-20.
- ↑ a b Jurman G, Riccadonna S, Visintainer R, Furlanello C: Canberra Distance on Ranked Lists. In Proceedings, Advances in Ranking – NIPS 09 Workshop Edited by Agrawal S, Burges C, Crammer K. 2009, 22–27.
- ↑ Emran, Syed Masum; Ye, Nong (2002). «Robustness of chi-square and Canberra distance metrics for computer intrusion detection». Quality and Reliability Engineering International 18 (1): 19-28. doi:10.1002/qre.441.