Récords mundiales

editar

Los siguientes récords de speedcubing son los oficiales aprobados por la World Cube Association.[1]

Evento Tipo Resultado
(min:s)
Persona Competición Detalles del resultado
(min:s)
2×2×2 Single 00:00.58   Rami Sbahi Canadian Open 2015
Average 00:01.55   Rami Sbahi Canadian Open 2015 00:00.58/ 00:01.46 / 00:01.81 / 00:01.37 / 00:01.67
3×3×3 Single 00:05.25   Collin Burns Doylestown Spring 2015
Average 00:06.54   Feliks Zemdegs Melbourne Cube Day 2013 00:06.91 / 00:06.41 / 00:06.25 / 00:07.30 / 00:06.31
4×4×4 Single 00:21.97   Sebastian Weyer Euro 2014
Average 00:26.03   Sebastian Weyer German Nationals 2014 00:26.06 / 00:27.08 / 00:26.36 / 00:25.68 / 00:24.86
5×5×5 Single 00:48.42   Feliks Zemdegs US Nationals 2014
Average 00:54.20   Feliks Zemdegs Niddrie 2014 00:52.88 / 00:54.33 / 00:55.18 / 00:53.08 / 00:56.80
6×6×6 Single 01:40.86   Kevin Hays Vancouver Summer 2013
Average 01:51.30   Kevin Hays Vancouver Summer 2013 01:40.86 / 02:01.94 / 01:51.11
7×7×7 Single 02:23.55   Feliks Zemdegs World Championship 2015
Average 02:33.73   Feliks Zemdegs World Championship 2015 02:33.40 / 02:44.25 / 02:23.55
Megaminx Single 00:37.58   Yu Da-Hyun Spring Comes 2015
Average 00:42.89   Yu Da-Hyun Asian Championship 2014 00:47.53 / 00:43.88 / 00:40.16 / 00:43.15 / 00:41.65
Pyraminx Single 00:01.36   Oscar Roth Andersen Danish Special 2013
Average 00:02.56   Drew Brads Virginia Open Fall 2014 00:02.46 / 00:02.65 / 00:02.58 / 00:09.19 / 00:01.96
Square-1 Single 00:06.96   Bingliang Li Guangzhou Wushan Open 2014
Average 00:10.21   Bingliang Li Guangzhou Wushan Open 2014 00:09.36 / 00:11.43 / 00:06.96 / 00:09.83 / 00:12.06
Rubik's clock Single 00:04.80   Evan Liu Xi'an Cherry Blossom 2015
Average 00:05.94   Evan Liu Xi'an Cherry Blossom 2015 00:06.34 / 00:05.84 / 00:07.66 / 00:05.63 / 00:04.80
Skewb Single 00:01.81   Jonatan Kłosko Santa Claus Cube Race 2014
Average 00:03.10   Jayden McNeill Niddrie 2014 00:06.34 / 00:02.65 / 00:02.75 / 00:02.52 / 00:03.90
3×3×3
Blindfolded (a ciegas)
Single 00:21.17   Marcin Zalewski PLS Szczecin 2014
Average 00:26.41   Kaijun Lin Guangzhou More Fun Site 2015 00:26.14 / 00:29.11 / 00:23.97
4×4×4
Blindfolded (a ciegas)
Single 02:10.47   Oliver Frost Edinburgh Spring 2015
5×5×5
Blindfolded (a ciegas)
Single 05:35.84   Oliver Frost Welcome Back to Guildford 2015
3×3×3
Multiple Blindfolded
Single 41/41   Marcin Kowalczyk SLS Swierklany 2013 54:14.00
3×3×3
One-handed (con una mano)
Single 00:06.88   Feliks Zemdegs Canberra Autumn 2015
Average 00:10.87   Antoine Cantin Toronto Spring 2015 00:10.56 / 00:14.19 / 00:10.58 / 00:10.07 / 00:11.47
3×3×3
With feet (con los pies)
Single 00:25.14   Gabriel Pereira Campanha Nova Odessa Open 2014
Average 00:29.96   Jakub Kipa Polish Open 2015 00:27.30 / 00:32.47 / 00:30.10
3×3×3
Fewest moves
Single 20   Tomoaki Okayama Czech Open 2012
Average 25.00   Sébastien Auroux Velbert Easter Open 2014 27 / 27 / 21
  Vincent Sheu US Nationals 2014 22 / 23 / 30

Canberra Distance

editar

The Canberra distance is a numerical measure of the distance between pairs of points in a vector space, introduced in 1966[2]​ and refined in 1967[3]​ by G. N. Lance and W. T. Williams. It is a weighted version of L₁ (Manhattan) distance.[4]​ The Canberra distance has been used as a metric for comparing ranked lists[4]​ and for intrusion detection in computer security.[5]

Definition

editar

The Canberra distance d between vectors p and q in an n-dimensional real vector space is given as follows:

 

where

 

are vectors.

The Canberra metric, Adkins form, divides the distance d by (n-Z) where Z is the number of attributes that are 0 for p and q.

Distancia Canberra La distancia de Canberra es una medida numérica de la distancia entre pares de puntos en un espacio vectorial, introducida en 1966 y refinada en 1967 por G. N. Lance y W. T. Williams. Es una versión ponderada de la distancia L₁ (Manhattan). La distancia de Canberra se ha utilizado como una métrica para comparar listas clasificadas y para la detección de intrusos en la seguridad informática.

Definición La distancia de Canberra d entre los vectores p y q en un espacio vectorial real n-dimensional se da como sigue:

{\ displaystyle d (\ mathbf {p}, \ mathbf {q}) = \ sum _ {i = 1} ^ {n} {\ frac {| p_ {i} -q_ {i} |} {| p_ { i} | + | q_ {i} |}}} dónde

{\ displaystyle \ mathbf {p} = (p_ {1}, p_ {2}, \ dots, p_ {n}) {\ text {y}} \ mathbf {q} = (q_ {1}, q_ {2 }, \ puntos, q_ {n})} son vectores

La métrica de Canberra, forma de Adkins, divide la distancia d por (n-Z) donde Z es el número de atributos que son 0 para p y q.

  1. http://www.worldcubeassociation.org/results/regions.php
  2. Lance, G. N.; Williams, W. T. (1966). «Computer programs for hierarchical polythetic classification ("similarity analysis").». Computer Journal 9 (1): 60-64. doi:10.1093/comjnl/9.1.60. 
  3. Lance, G. N.; Williams, W. T. (1967). «Mixed-data classificatory programs I.) Agglomerative Systems». Australian Computer Journal: 15-20. 
  4. a b Jurman G, Riccadonna S, Visintainer R, Furlanello C: Canberra Distance on Ranked Lists. In Proceedings, Advances in Ranking – NIPS 09 Workshop Edited by Agrawal S, Burges C, Crammer K. 2009, 22–27.
  5. Emran, Syed Masum; Ye, Nong (2002). «Robustness of chi-square and Canberra distance metrics for computer intrusion detection». Quality and Reliability Engineering International 18 (1): 19-28. doi:10.1002/qre.441.