∫ 0 x ′ / c d z d ( x ′ / c ) d ( x ′ / c ) ) = ∫ ( x L E ) / c ( x ′ / c ) ( c / l ) − ( x L E ) / c d z d x ( c 2 / l ) ( l / c ) , d ( x / c ) {\displaystyle \int _{0}^{x'/c}{\frac {dz}{d(x'/c)}}\,d(x'/c))=\int _{(x_{LE})/c}^{(x'/c)(c/l)-(x_{LE})/c}{\frac {dz}{dx}}\ (c^{2}/l)(l/c),d(x/c)}
∫ ( x L E ) / c ( x ′ / c ) ( c / l ) − ( x L E ) / c d z d x ( c 2 / l ) ( l / c ) , d ( x / c ) {\displaystyle \int _{(x_{LE})/c}^{(x'/c)(c/l)-(x_{LE})/c}{\frac {dz}{dx}}\ (c^{2}/l)(l/c),d(x/c)}