Proceso de Feller continuo

En matemáticas, un proceso de Feller continuo' es un proceso estocástico de tiempo continuo para el cual el valor esperado de las estadísticas adecuadas del proceso en un momento dado en el futuro depende continuamente en la condición inicial del proceso. Debe su nombre al matemático croata-americano William Feller.

Definición

editar

Deja a  , definido en un espacio probabilístico  , ser un proceso estocástico. Para un punto  , deja a   denotar la ley de   valor inicial dado  , y deja a   denotar la esperanza con respecto a  . Entonces, se dice que   es un proceso de Feller continuo si, para cualquier   arreglado y cualquier función ligada, continua, y medible en    , depende continuamente de  .

Ejemplos

editar
  • Cada proceso   cuyos caminos son casi seguramente constantes para cada tiempo es un proceso de Feller continuo, ya que   es simplemente  , la cual, por hipótesis, depende continuamente de  .
  • Toda difusión de Itō con derivadas y coeficientes de difusión continuos lipschitzianos es un proceso de Feller continuo.

Véase también

editar

Referencias

editar