En teoría de la medida, una función medible es aquella que preserva la estructura entre dos espacios medibles. Formalmente, una función entre dos espacios medibles se dice medible si la preimagen (también llamada imagen inversa) de cualquier conjunto medible es a su vez medible.

Definición

editar

Sean   espacios de medida,  . Se dice que   es una función medible con respecto a   y   (o simplemente se dice que es medible) si para todo  ,  .

Funciones medibles especiales

editar
  • Si   y   son espacios de Borel, entonces toda función medible   es llamada función de Borel (o función Borel-medible). Toda función continua es de Borel, pero no toda función de Borel es continua.
  • Una función Lebesgue-medible es una función  , donde   es la sigma-álgebra de los conjuntos Lebesgue-medibles y   es el álgebra de Borel en los números complejos  . Estas funciones son de interés en el análisis matemático debido a que siempre pueden ser integradas.

Propiedades de las funciones medibles

editar
  • La suma y producto de dos funciones complejas medibles es también medible. Debido a esto también lo es el cociente (siempre que no haya división por cero).
  • Si   y   son medibles entonces la composición   es medible. Esto no es necesariamente cierto cuando las sigma-álgebras no coinciden, es decir, si   y   entonces   podría no ser medible aunque f y g sí lo sean.

Existencia de σ-álgebras mínimas

editar

Dada una función   donde   es un espacio de medida, siempre puede construirse una σ-álgebra   tal que la función f es una función medible entre los espacios   y  , esto se logra definiendo   como la colección de subconjuntos definida por:

 

Si f es una función medible entre esos dos conjuntos, entonces la σ-álgebra del conjunto antiimagen contendrá a la σ-álgebra mínima anterior.

Existencia de σ-álgebras máximas

editar

Dada una función   donde   es un espacio de medida, siempre existe una σ-álgebra máxima   tal que si f es una función medible entre los espacios   y  , entonces la σ-álgebra sobre el conjunto imagen contiene a la siguiente sigma álgebra:

 

Teorema

editar

Toda función continua definida en un conjunto medible es medible.

Demostración

editar

Sea E un conjunto medible en  , y   una función continua. Si G es un conjunto abierto en  , sabemos que por las propiedades de las funciones continuas   es abierto en E, es decir, existe un conjunto abierto   tal que   . Así, E es medible por definición de función medible, y U es medible por ser abierto, luego   es medible. Por tanto,   es medible.

Referencias

editar
  1. Strichartz, Robert (2000). The Way of Analysis. Jones and Bartlett. ISBN 0-7637-1497-6.
  2. Folland, Gerald B. (1999). Real Analysis: Modern Techniques and their Applications. Wiley. ISBN 0471317160.
  3. Billingsley, Patrick (1995). Probability and Measure. Wiley. ISBN 0-471-00710-2.
  4. Royden, H. L. (1988). Real Analysis. Prentice Hall. ISBN 0-02-404151-3.
  5. Unican.es