3-variedad
En topología de dimensiones bajas las 3-variedades son un campo que estudia variedades topológicas de tres dimensiones. Es decir espacios de Hausdorff que son localmente homeomorfos al espacio euclídeo .
Se sabe que en las categorías topológica, diferenciable y P.L. son todas equivalentes para el caso de 3-variedades, así que poca distinción se presta a qué categoría se está usando.
Esta parte de la matemática tiene una estrecha conexión con otros campos de estudio tales como las superficies, las 4-variedades, la teoría de nudos, las teorías de campo cuántico, las teorías de calibración y las ecuaciones en derivadas parciales. Se dice también que la teoría de 3-variedades es parte de la topología geométrica.
Una idea clave para estudiar estos objetos es considerar superficies encajadas en ellos. Esto conduce a la idea de superficie incompresible (incompressible surface) y la teoría de variedades de Haken, o uno puede elegirlas de tal modo que las piezas complementarias sean menos complejas, lo cual conduce a la noción de jerarquías o a la descomposición mediante cubos con asas o también llamadas descomposiciones de Heegaard.
Ejemplos sin frontera
editarComo primeras muestras de la gran variedad de objetos, pensemos en espacios compactos y sin frontera: Un primer ejemplo, la 3-esfera . Otro más es el espacio proyectivo . Es posible obtener espacios de tres dimensiones con el producto cartesiano:
O bien fibrados de la forma , donde es un orbifold: estos son los fibrados de Scott-Seifert. Indispensables para entender las modernas clasificaciones de las 3-variedades.
También tenemos los fibrados de las forma , siendo una superficie cerrada. Estos son fuente de ejemplos muy importantes.
Ejemplos con frontera
editarHay 3-variedades con frontera, como la 3-bola unitaria o el toro sólido , cuyas fronteras son las 2-esfera y el toro, respectivamente. La botella de Klein sólida es otro ejemplo de tres variedad con frontera que es una superficie una botella de Klein.
También están todos los fibrados de la forma
donde es un intervalo y una superficie. Ejemplo es el fibrado (orientable) por intervalo sobre la botella de Klein, , que es el fibrado que construye pegando dos toros sólidos identificando dos aros en la frontera, uno en cada uno de ellos. Cada uno de estos aros es la vecindad regular de una curva dos-longitudes y un meridiano, i.e. un nudo tórico. Sabemos que su frontera, , es un toro . Además corresponde a .
Otro ejemplo es el producto cartesiano de la banda de Möbius con el círculo y el cual es y es diferente a .
También la frontera es , lo cual, también es un toro .
Algunas clases de 3-variedades
editar- Complementos de nudos y enlaces (knots and links)
- Fibrado de Seifert clásico fibrado de Seifert. Fibrado de Scott
- Espacios lentes (lens spaces)
- Fibrados por superficie (Surface Bundles) sobre el círculo
- Variedades de Haken
- Graph manifolds
- Esferas homológicas.
Resultados Fundamentales
editar- Teorema de Descomposición Prima[1]
- Teorema de Moise
- Descomposición de JSJ[2]
- Teoremas del Lazo y la Esfera[3] (que generalizan el Lema de Dehn).
- Teorema de Geometrización para variedades de Haken
- Teorema de Lickorish-Wallace
Problemas famosos
editar- Conjetura de Poincaré
- Geometrización de Thurston[4]
- Conjetura de la fibración virtual.
- Conjetura de ser virtualmente Haken.
Referencias
editar- J. Hempel. 3-manifolds. Annals of mathematics studies No.86. Princeton Univ. Press. 1976. ISBN 0-691-08178-6, ISBN 0-691-08183-2 pbk
- D. Rolfsen Knots and Links. Mathematical Lecture Series. 7. Berkeley, Ca.: Publish Perish, Inc. 1976.
- A. Hatcher Basic topology of 3-manifolds. En línea disponible en [5]