lim y → 2 ( 4 y 3 + 8 y y + 4 ) 1 3 = {\displaystyle \lim _{y\to \ 2}\left({\frac {4y^{3}+8y}{y+4}}\right){\frac {1}{3}}=}
lim x → − 2 x 2 + 7 x + 10 x + 2 = {\displaystyle \lim _{x\to \ -2}\ {\frac {x^{2}+7x+10}{x+2}}=}
lim u → 2 u 2 − 2 y u 2 − 4 = {\displaystyle \lim _{u\to \ 2}\ {\frac {u^{2}-2y}{u^{2}-4}}=}
lim x → 2 ( 2 1 − x 2 x 2 + 2 ) = {\displaystyle \lim _{x\to \ 2}\left({\frac {2}{1}}-{\frac {x^{2}}{x^{2}+2}}\right)=}
lim x → 2 x 2 − 2 x − 2 = {\displaystyle \lim _{x\to \ {\sqrt {2}}}\ {\frac {x^{2}-2}{x-{\sqrt {2}}}}=}