Usuario:Amitie 10g/Abandonados/UNITY (lenguaje de programación)

UNITY is a programming language that was constructed by K. Mani Chandy and Jayadev Misra for their book Parallel Program Design: A Foundation. It is a rather theoretical language, which tries to focus on what, instead of where, when or how. The peculiar thing about the language is that it has no flow control. The statements in the program run in a random order, until none of the statements causes change if run. This allows for programs that run indefinitely (auto-pilot or power plant safety system) as well as programs that would normally terminate (which here converge to a fixed point).

Description

editar

All statements are assignments, and are separated by #. A statement can consist of multiple assignments, of the form a,b,c := x,y,z, or a := x || b := y || c := z. You can also have a quantified statement list, <# x,y : expression :: statement>, where x and y are chosen randomly among the values that satisfy expression. A quantified assignment is similar. In <|| x,y : expression :: statement >, statement is executed simultaneously for all pairs of x and y that satisfy expression.

Examples

editar

Bubble sort

editar

Bubble sort the array by comparing adjacent numbers, and swapping them if they are in the wrong order. Using   expected time,   processors and   expected work. The reason you only have   expected time, is that k is always chosen randomly from  . This can be fixed by flipping k manually.

Program bubblesort
declare
    n: integer,
    A: array [0..n-1] of integer
initially
    n = 20 #
    <|| i : 0 <= i and i < n :: A[i] = rand() % 100 >
assign
    <# k : 0 <= k < 2 ::
        <|| i : i % 2 = k and 0 <= i < n - 1 ::
            A[i], A[i+1] := A[i+1], A[i] 
                if A[i] > A[i+1] > >
end

Rank-sort

editar

You can sort in   time with rank-sort. You need   processors, and do   work.

Program ranksort
declare
    n: integer,
    A,R: array [0..n-1] of integer
initially
    n = 15 #
    <|| i : 0 <= i < n :: 
        A[i], R[i] = rand() % 100, i >
assign
    <|| i : 0 <= i < n ::
        R[i] := <+ j : 0 <= j < n and (A[j] < A[i] or (A[j] = A[i] and j < i)) :: 1 > >
    #
    <|| i : 0 <= i < n ::
        A[R[i]] := A[i] >
end

Floyd–Warshall algorithm

editar

Using the Floyd–Warshall algorithm all pairs shortest path algorithm, we include intermediate nodes iteratively, and get   time, using   processors and   work.

Program shortestpath
declare
    n,k: integer,
    D: array [0..n-1, 0..n-1] of integer
initially
    n = 10 #
    k = 0 #
    <|| i,j : 0 <= i < n and 0 <= j < n :: 
        D[i,j] = rand() % 100 >
assign
    <|| i,j : 0 <= i < n and 0 <= j < n ::
        D[i,j] := min(D[i,j], D[i,k] + D[k,j]) > ||
    k := k + 1 if k < n - 1
end

We can do this even faster. The following programs computes all pairs shortest path in   time, using   processors and   work.

Program shortestpath2
declare
    n: integer,
    D: array [0..n-1, 0..n-1] of integer
initially
    n = 10 #
    <|| i,j : 0 <= i < n and 0 <= j < n ::
        D[i,j] = rand() % 10 >
assign
    <|| i,j : 0 <= i < n and 0 <= j < n ::
        D[i,j] := min(D[i,j], <min k : 0 <= k < n :: D[i,k] + D[k,j] >) >
end

After round  , D[i,j] contains the length of the shortest path from   to   of length  . In the next round, of length  , and so on.

References

editar
  • K. Mani Chandy and Jayadev Misra (1988) Parallel Program Design: A Foundation.