f
(
x
)
{\displaystyle f(x)\,}
f
~
α
(
n
)
{\displaystyle {\tilde {f}}_{\alpha }(n)\,}
x
a
−
1
,
a
>
0
{\displaystyle x^{a-1},\ a>0\,}
Γ
(
a
+
α
)
Γ
(
n
−
a
+
1
)
n
!
Γ
(
1
−
a
)
{\displaystyle {\frac {\Gamma (a+\alpha )\Gamma (n-a+1)}{n!\Gamma (1-a)}}}
e
−
a
x
,
a
>
−
1
{\displaystyle e^{-ax},\ a>-1\,}
Γ
(
n
+
α
+
1
)
a
n
n
!
(
a
+
1
)
n
+
α
+
1
{\displaystyle {\frac {\Gamma (n+\alpha +1)a^{n}}{n!(a+1)^{n+\alpha +1}}}}
sin
a
x
,
a
>
0
,
α
=
0
{\displaystyle \sin ax,\ a>0,\ \alpha =0\,}
a
n
(
1
+
a
2
)
n
+
1
2
sin
[
n
tan
−
1
1
a
+
tan
−
1
(
−
a
)
]
{\displaystyle {\frac {a^{n}}{(1+a^{2})^{\frac {n+1}{2}}}}\sin \left[n\tan ^{-1}{\frac {1}{a}}+\tan ^{-1}(-a)\right]}
cos
a
x
,
a
>
0
,
α
=
0
{\displaystyle \cos ax,\ a>0,\ \alpha =0\,}
a
n
(
1
+
a
2
)
n
+
1
2
cos
[
n
tan
−
1
1
a
+
tan
−
1
(
−
a
)
]
{\displaystyle {\frac {a^{n}}{(1+a^{2})^{\frac {n+1}{2}}}}\cos \left[n\tan ^{-1}{\frac {1}{a}}+\tan ^{-1}(-a)\right]}
L
m
α
(
x
)
{\displaystyle L_{m}^{\alpha }(x)\,}
(
n
+
α
n
)
Γ
(
α
+
1
)
δ
m
n
{\displaystyle {\binom {n+\alpha }{n}}\Gamma (\alpha +1)\delta _{mn}}
e
−
a
x
L
m
α
(
x
)
{\displaystyle e^{-ax}L_{m}^{\alpha }(x)\,}
Γ
(
n
+
α
+
1
)
Γ
(
m
+
α
+
1
)
n
!
m
!
Γ
(
α
+
1
)
(
a
−
1
)
n
−
m
+
α
+
1
a
n
+
m
+
2
α
+
2
2
F
1
(
n
+
α
+
1
;
m
+
α
+
1
α
+
1
;
1
a
2
)
{\displaystyle {\frac {\Gamma (n+\alpha +1)\Gamma (m+\alpha +1)}{n!m!\Gamma (\alpha +1)}}{\frac {(a-1)^{n-m+\alpha +1}}{a^{n+m+2\alpha +2}}}{}_{2}F_{1}\left(n+\alpha +1;{\frac {m+\alpha +1}{\alpha +1}};{\frac {1}{a^{2}}}\right)}
[ 5]
f
(
x
)
x
β
−
α
{\displaystyle f(x)x^{\beta -\alpha }\,}
∑
m
=
0
n
(
m
!
)
−
1
(
α
−
β
)
m
L
n
−
m
β
(
x
)
{\displaystyle \sum _{m=0}^{n}(m!)^{-1}(\alpha -\beta )_{m}L_{n-m}^{\beta }(x)}
e
x
x
−
α
Γ
(
α
,
x
)
{\displaystyle e^{x}x^{-\alpha }\Gamma (\alpha ,x)\,}
∑
n
=
0
∞
(
n
+
α
n
)
Γ
(
α
+
1
)
n
+
1
{\displaystyle \sum _{n=0}^{\infty }{\binom {n+\alpha }{n}}{\frac {\Gamma (\alpha +1)}{n+1}}}
x
β
,
β
>
0
{\displaystyle x^{\beta },\ \beta >0\,}
Γ
(
α
+
β
+
1
)
∑
n
=
0
∞
(
n
+
α
n
)
(
−
β
)
n
Γ
(
α
+
1
)
Γ
(
n
+
α
+
1
)
{\displaystyle \Gamma (\alpha +\beta +1)\sum _{n=0}^{\infty }{\binom {n+\alpha }{n}}(-\beta )_{n}{\frac {\Gamma (\alpha +1)}{\Gamma (n+\alpha +1)}}}
(
1
−
z
)
−
(
α
+
1
)
exp
(
x
z
z
−
1
)
,
‖
z
|
<
1
,
α
≥
0
{\displaystyle (1-z)^{-(\alpha +1)}\exp \left({\frac {xz}{z-1}}\right),\|z|<1,\ \alpha \geq 0\,}
∑
n
=
0
∞
(
n
+
α
n
)
Γ
(
α
+
1
)
z
n
{\displaystyle \sum _{n=0}^{\infty }{\binom {n+\alpha }{n}}\Gamma (\alpha +1)z^{n}}
(
x
z
)
−
α
/
2
e
z
J
α
[
2
(
x
z
)
1
/
2
]
,
‖
z
|
<
1
,
α
≥
0
{\displaystyle (xz)^{-\alpha /2}e^{z}J_{\alpha }\left[2(xz)^{1/2}\right],\|z|<1,\ \alpha \geq 0\,}
∑
n
=
0
∞
(
n
+
α
n
)
Γ
(
α
+
1
)
Γ
(
n
+
α
+
1
)
z
n
{\displaystyle \sum _{n=0}^{\infty }{\binom {n+\alpha }{n}}{\frac {\Gamma (\alpha +1)}{\Gamma (n+\alpha +1)}}z^{n}}
d
d
x
f
(
x
)
{\displaystyle {\frac {d}{dx}}f(x)\,}
f
~
α
(
n
)
−
α
∑
k
=
0
n
f
~
α
−
1
(
k
)
+
∑
k
=
0
n
−
1
f
~
α
(
k
)
{\displaystyle {\tilde {f}}_{\alpha }(n)-\alpha \sum _{k=0}^{n}{\tilde {f}}_{\alpha -1}(k)+\sum _{k=0}^{n-1}{\tilde {f}}_{\alpha }(k)}
x
d
d
x
f
(
x
)
,
α
=
0
{\displaystyle x{\frac {d}{dx}}f(x),\alpha =0\,}
−
(
n
+
1
)
f
~
0
(
n
+
1
)
+
n
f
~
0
(
n
)
{\displaystyle -(n+1){\tilde {f}}_{0}(n+1)+n{\tilde {f}}_{0}(n)}
∫
0
x
f
(
t
)
d
t
,
α
=
0
{\displaystyle \int _{0}^{x}f(t)dt,\ \alpha =0\,}
f
~
0
(
n
)
−
f
~
0
(
n
−
1
)
{\displaystyle {\tilde {f}}_{0}(n)-{\tilde {f}}_{0}(n-1)}
e
x
x
−
α
d
d
x
[
e
−
x
x
α
+
1
d
d
x
]
f
(
x
)
{\displaystyle e^{x}x^{-\alpha }{\frac {d}{dx}}\left[e^{-x}x^{\alpha +1}{\frac {d}{dx}}\right]f(x)\,}
−
n
f
~
α
(
n
)
{\displaystyle -n{\tilde {f}}_{\alpha }(n)}
{
e
x
x
−
α
d
d
x
[
e
−
x
x
α
+
1
d
d
x
]
}
k
f
(
x
)
{\displaystyle \left\{e^{x}x^{-\alpha }{\frac {d}{dx}}\left[e^{-x}x^{\alpha +1}{\frac {d}{dx}}\right]\right\}^{k}f(x)\,}
(
−
1
)
k
n
k
f
~
α
(
n
)
{\displaystyle (-1)^{k}n^{k}{\tilde {f}}_{\alpha }(n)}
L
n
α
(
x
)
,
α
>
−
1
{\displaystyle L_{n}^{\alpha }(x),\alpha >-1\,}
Γ
(
n
+
α
+
1
)
n
!
{\displaystyle {\frac {\Gamma (n+\alpha +1)}{n!}}}
x
L
n
α
(
x
)
,
α
>
−
1
{\displaystyle xL_{n}^{\alpha }(x),\alpha >-1\,}
Γ
(
n
+
α
+
1
)
n
!
(
2
n
+
1
+
α
)
{\displaystyle {\frac {\Gamma (n+\alpha +1)}{n!}}(2n+1+\alpha )}
1
π
∫
0
∞
e
−
t
f
(
t
)
d
t
∫
0
π
e
x
t
cos
θ
cos
(
x
t
sin
θ
)
g
(
x
+
t
−
2
x
t
cos
θ
)
d
θ
,
α
=
0
{\displaystyle {\frac {1}{\pi }}\int _{0}^{\infty }e^{-t}f(t)dt\int _{0}^{\pi }e^{{\sqrt {xt}}\cos \theta }\cos({\sqrt {xt}}\sin \theta )g(x+t-2{\sqrt {xt}}\cos \theta )d\theta ,\alpha =0\,}
f
~
0
(
n
)
g
~
0
(
n
)
{\displaystyle {\tilde {f}}_{0}(n){\tilde {g}}_{0}(n)}
Γ
(
n
+
α
+
1
)
π
Γ
(
n
+
1
)
∫
0
∞
e
−
t
t
α
f
(
t
)
d
t
∫
0
π
e
−
x
t
cos
θ
sin
2
α
θ
g
(
x
+
t
+
2
x
t
cos
θ
)
J
α
−
1
/
2
(
x
t
sin
θ
)
[
(
x
t
sin
θ
)
/
2
]
α
−
1
/
2
d
θ
{\displaystyle {\frac {\Gamma (n+\alpha +1)}{{\sqrt {\pi }}\Gamma (n+1)}}\int _{0}^{\infty }e^{-t}t^{\alpha }f(t)dt\int _{0}^{\pi }e^{-{\sqrt {xt}}\cos \theta }\sin ^{2\alpha }\theta g(x+t+2{\sqrt {xt}}\cos \theta ){\frac {J_{\alpha -1/2}({\sqrt {xt}}\sin \theta )}{[({\sqrt {xt}}\sin \theta )/2]^{\alpha -1/2}}}d\theta \,}
f
~
α
(
n
)
g
~
α
(
n
)
{\displaystyle {\tilde {f}}_{\alpha }(n){\tilde {g}}_{\alpha }(n)}
[ 6]