Prueba U de Mann-Whitney

(Redirigido desde «Prueba U de Mann Whitney»)

En estadística la prueba de la U de Mann-Whitney (también llamada de Mann-Whitney-Wilcoxon, prueba de suma de rangos Wilcoxon, o prueba de Wilcoxon-Mann-Whitney) es una prueba no paramétrica aplicada a dos muestras independientes. Es la versión no paramétrica de la habitual prueba t de Student.

Fue propuesto inicialmente en 1945 por Frank Wilcoxon para muestras de igual tamaño y extendido a muestras de tamaño arbitrario como en otros sentidos por Henry B. Mann y D. R. Whitney en 1947.

Planteamiento de la prueba

editar

La prueba de Mann-Whitney se usa para comprobar la heterogeneidad de dos muestras ordinales. El planteamiento de partida es:

  1. Las observaciones de ambos grupos son independientes.
  2. Las observaciones son variables ordinales o continuas.
  3. Bajo la hipótesis nula, la distribución de partida de ambos grupos es la misma: P(X > Y) = P(Y > X)
  4. Bajo la hipótesis alternativa, los valores de una de las muestras tienden a exceder a los de la otra: P(X > Y) + 0.5 P(X = Y)  > 0.5.

Cálculo del estadístico

editar

Para calcular el estadístico U se asigna a cada uno de los valores de las dos muestras su rango para construir

 
 

donde n1 y n2 son los tamaños respectivos de cada muestra; R1 y R2 es la suma de los rangos (la suma de la posición relativa de cada individuo de la muestra) de las observaciones de las muestras 1 y 2 respectivamente.

El estadístico U se define como el mínimo de U1 y U2.

Los cálculos tienen que tener en cuenta la presencia de observaciones idénticas a la hora de ordenarlas. No obstante, si su número es pequeño, se puede ignorar esa circunstancia.

Distribución del estadístico

editar

La prueba calcula el llamado estadístico U, cuya distribución para muestras con más de 20 observaciones se aproxima bastante bien a la distribución normal.

La aproximación a la normal, z, cuando tenemos muestras lo suficientemente grandes viene dada por la expresión:

 

Donde mU y σU son la media y la desviación estándar de U si la hipótesis nula es cierta, y vienen dadas por las siguientes fórmulas:

 
 

Implementaciones

editar

Véase también

editar