Serie de Taylor
En matemática, una serie de Taylor es una aproximación de funciones mediante una serie de potencias o suma de potencias enteras de polinomios como llamados términos de la serie, dicha suma se calcula a partir de las derivadas de la función para un determinado valor o punto suficientemente derivable sobre la función y un entorno sobre el cual converja la serie. A la serie centrada sobre el punto cero, es decir, cuando , se le denomina también serie de Maclaurin.
Esta aproximación tiene tres ventajas importantes:
- la derivación e integración de una de estas series se puede realizar término a término, que resultan operaciones triviales;
- se puede utilizar para calcular valores aproximados de funciones;
- es posible calcular la optimidad de la aproximación.
Algunas funciones no se pueden escribir como serie de Taylor porque tienen alguna singularidad. En estos casos normalmente se puede conseguir un desarrollo en serie utilizando potencias negativas de (véase Serie de Laurent). Por ejemplo se puede desarrollar como serie de Laurent. La serie Taylor debe su nombre a Brook Taylor, que las introdujo en 1715.
Definición
editarLa serie de Taylor de una función real o compleja infinitamente diferenciable en el entorno de un número real o complejo a es la siguiente serie de potencias:
donde denota el factorial de . Utilizando la notación sigma, lo anterior puede ser escrito de manera compacta como
donde denota la -ésima derivada de evaluada en el punto . (La derivada de orden cero de es definida como la propia y tanto como son ambos definidos como .)
En particular, cuando , la serie es denominada: serie de Maclaurin.
Cabe destacar que en una serie de Taylor de potencias centrada en de la forma siempre se puede hacer el cambio de variable (con lo que en la función a desarrollar original) para expresarla como centrada en 0. Luego hay que deshacer el cambio de variable. Por ejemplo, si se quiere desarrollar la función alrededor de a = 1 se puede tomar , de manera que se desarrollaría centrada en 0.
Ejemplos
editarLa serie de Taylor de un polinomio es el propio polinomio.
La serie de Maclaurin para es la serie geométrica
por lo que la serie de Taylor para en es
Integrando la serie de Maclaurin de arriba, obtenemos la serie de Maclaurin de , donde denota el logaritmo natural
más general, la serie de Taylor para en un punto arbitrario es
La serie de Maclaurin de la función exponencial es
Historia
editarEl filósofo eleata Zenón de Elea consideró el problema de sumar una serie infinita para lograr un resultado finito, pero lo descartó por considerarlo imposible: [1] el resultado fueron las paradojas de Zenón. Posteriormente, Aristóteles propuso una resolución filosófica a la paradoja, pero el contenido matemático de esta no quedó resuelto hasta que lo retomaron Demócrito y después Arquímedes. Fue a través del método exhaustivo de Arquímedes que un número infinito de subdivisiones geométricas progresivas podían alcanzar un resultado trigonométrico finito.[2] Independientemente, Liu Hui utilizó un método similar cientos de años después.[3]
En el siglo XIV, los primeros ejemplos del uso de series de Taylor y métodos similares fueron dados por Madhava de Sangamagrama.[4][5] A pesar de que hoy en día ningún registro de su trabajo ha sobrevivido a los años, escritos de matemáticos hindúes posteriores de la escuela de Kerala de astronomía y matemáticas sugieren que él encontró un número de casos especiales de la serie de Taylor, incluidos aquellos para las funciones trigonométricas del seno, coseno, tangente y arcotangente (véase las Series de Madhava).
En el siglo XVII, James Gregory también trabajó en esta área y publicó varias series de Maclaurin.[6] Pero en 1715 se presentó una forma general para construir estas series para todas las funciones para las que existe y fue presentado por Brook Taylor, de quien recibe su nombre.
Las series de Maclaurin fueron nombradas así por Colin Maclaurin, un profesor de Edimburgo, quien publicó el caso especial de las series de Taylor en el siglo XVIII.
Si está dada por una serie de potencias convergente en un disco abierto (o intervalo en la recta real) centrada en en el plano complejo entonces se dice que es analítica en el disco, por lo que para en este disco, está dada por la serie de potencia convergente
derivando con respecto a la fórmula anterior veces y evaluando obtenemos
y en tal caso, la expansión en series de potencia coincide con la serie de Taylor. Por lo tanto, una función es analítica en un disco abierto centrado en si y sólo si su serie de Taylor converge al valor de la función en cada punto en el disco.
Si es igual a la suma de su serie de Taylor para toda en el plano complejo entonces es llamada entera. Los polinomios, la función exponencial y las funciones trigonométrica seno y coseno, son ejemplos de funciones enteras. Ejemplos de funciones que no son enteras son el logaritmo, la función trigonométrica tangente y su inversa, arcotangente; para estas funciones la serie de Taylor no converge si está alejado de , esto es, la serie de Taylor diverge para si la distancia entre y es mayor que el radio de convergencia. La serie de Taylor puede ser usada para calcular el valor de una función entera en cada punto si el valor de la función y todas sus derivadas son conocidas en cada punto.
Lista de Series de Maclaurin de algunas funciones comunes
editarA continuación se enumeran algunas series de Maclaurin de funciones básicas. Todos los desarrollos son también válidos para valores complejos de .
Función exponencial
editarLa función exponencial tiene como serie de Maclaurin
y converge para toda .
Logaritmo natural
editarEl logaritmo natural (en base ) tiene como serie de Maclaurin
y convergen para .
Serie geométrica
editarLa serie geométrica y sus derivadas tienen serie de Maclaurin
y todas convergen para .
Serie binomial
editarLa serie binomial es la serie de potencias
- cuyos coeficientes son los coeficientes binomiales generalizados
- Converge para para cualquier .
- Cuando , obtenemos la serie geométrica mencionada anteriormente
Las función trigonométricas usuales y sus inversas tienen como series de Maclaurin:
Todos los ángulos están expresados en radianes. Los números son los números de Bernoulli mientas que son los números de Euler.
Las funciones hiperbólicas tienen como series de Maclaurin
donde los números son los números de Bernoulli.
Serie de Taylor en varias variables
editarLa serie de Taylor se puede generalizar a funciones de más de una variable como
Como ejemplo, para una función de 2 variables , la serie de Taylor de segundo orden alrededor del punto es:
donde los subíndices denotan las respectivas derivadas parciales, esto es
Una expansión en serie Taylor de segundo orden para funciones escalares de más de una variable puede ser escrito de manera compacta como
donde es el gradiente de en y es la matriz hessiana. Otra forma:
Aplicaciones
editarAdemás de la obvia aplicación de utilizar funciones polinómicas en lugar de funciones de mayor complejidad para analizar el comportamiento local de una función, las series de Taylor tienen muchas otras aplicaciones.
Algunas de ellas son: análisis de límites y estudios paramétricos de los mismos, estimación de números irracionales acotando su error, la regla de l'Hôpital para la resolución de límites indeterminados, estudio de puntos estacionarios en funciones (máximos o mínimos relativos o puntos sillas de tendencia estrictamente creciente o decreciente), estimación de integrales, determinación de convergencia y suma de algunas series importantes, estudio de orden y parámetro principal de infinitésimos, etc.
Conjunto de operadores fraccionales
editarEl cálculo fraccional de conjuntos (Fractional Calculus of Sets (FCS)), mencionado por primera vez en el artículo titulado "Sets of Fractional Operators and Numerical Estimation of the Order of Convergence of a Family of Fractional Fixed-Point Methods",[7] es una metodología derivada del cálculo fraccional.[8] El concepto principal detrás del FCS es la caracterización de los elementos del cálculo fraccional utilizando conjuntos debido a la gran cantidad de operadores fraccionales disponibles.[9][10][11] Esta metodología se originó a partir del desarrollo del método de Newton-Raphson fraccional [12] y trabajos relacionados posteriores.[13][14][15]
El cálculo fraccional, una rama de las matemáticas que trata con derivadas de orden no entero, surgió casi simultáneamente con el cálculo tradicional. Esta emergencia fue en parte debido a la notación de Leibniz para derivadas de orden entero: . Gracias a esta notación, L'Hopital pudo preguntar en una carta a Leibniz sobre la interpretación de tomar en una derivada. En ese momento, Leibniz no pudo proporcionar una interpretación física o geométrica para esta pregunta, por lo que simplemente respondió a L'Hopital en una carta que «... es una aparente paradoja de la cual, algún día, se derivarán consecuencias útiles».
El nombre «cálculo fraccional» se origina a partir de una pregunta histórica, ya que esta rama del análisis matemático estudia derivadas e integrales de un cierto orden . Actualmente, el cálculo fraccional carece de una definición unificada de lo que constituye una derivada fraccional. En consecuencia, cuando no es necesario especificar explícitamente la forma de una derivada fraccional, típicamente se denota de la siguiente manera:
Los operadores fraccionales tienen varias representaciones, pero una de sus propiedades fundamentales es que recuperan los resultados del cálculo tradicional a medida que . Considerando una función escalar y la base canónica de denotada por , el siguiente operador fraccional de orden se define utilizando notación de Einstein:[16]
Denotando como la derivada parcial de orden con respecto al componente -ésimo del vector , se define el siguiente conjunto de operadores fraccionales:
cuyo complemento es:
Como consecuencia, se define el siguiente conjunto:
Extensión a funciones vectoriales
editarPara una función , el conjunto se define como:
donde denota el -ésimo componente de la función .
Conjunto de operadores fraccionales
editarSea el conjunto . Si y , entonces es posible definir la siguiente notación multi-índice:
Entonces, considerando una función y el operador fraccional:
se define el siguiente conjunto de operadores fraccionales:
De donde se obtienen los siguientes resultados:
Como consecuencia, considerando una función , se define el siguiente conjunto de operadores fraccionales:
Conjunto de operadores fraccionales
editarConsiderando una función y el siguiente conjunto de operadores fraccionales:
Entonces, tomando una bola , es posible definir el siguiente conjunto de operadores fraccionales:
el cual permite generalizar la expansión en serie de Taylor de una función vectorial en notación multi-índice. Como consecuencia, es posible obtener el siguiente resultado:
Véase también
editarReferencias
editar- ↑ Lindberg, David (2007). The Beginnings of Western Science (en inglés) (2nd edición). University of Chicago Press. p. 33. ISBN 978-0-226-48205-7.
- ↑ Kline, M. (1990) Mathematical Thought from Ancient to Modern Times. Oxford University Press. pp. 35-37.
- ↑ Boyer, C. and Merzbach, U. (1991) A History of Mathematics. John Wiley and Sons. pp. 202-203.
- ↑ «Neither Newton nor Leibniz - The Pre-History of Calculus and Celestial Mechanics in Medieval Kerala». MAT 314. Canisius College. Archivado desde el original el 6 de agosto de 2006. Consultado el 9 de julio de 2006.
- ↑ S. G. Dani (2012). «Ancient Indian Mathematics – A Conspectus». Resonance (en inglés) 17 (3): 236-246. S2CID 120553186. doi:10.1007/s12045-012-0022-y.
- ↑ Turnbull, Herbert Westren, ed. (1939). James Gregory; Tercentenary Memorial Volume. G. Bell & Sons. pp. 168-174.Roy, Ranjan (1990). «The Discovery of the Series Formula for π by Leibniz, Gregory and Nilakantha». Mathematics Magazine 63 (5): 291-306. doi:10.1080/0025570X.1990.11977541.Malet, Antoni (1993). «James Gregorie on Tangents and the "Taylor" Rule for Series Expansions». Archive for History of Exact Sciences 46 (2): 97-137. JSTOR 41133959. S2CID 120101519. doi:10.1007/BF00375656.
- ↑ Sets of Fractional Operators and Numerical Estimation of the Order of Convergence of a Family of Fractional Fixed-Point Methods
- ↑ Applications of fractional calculus in physics
- ↑ A review of definitions for fractional derivatives and integral
- ↑ A review of definitions of fractional derivatives and other operators
- ↑ How many fractional derivatives are there?
- ↑ Fractional Newton-Raphson Method
- ↑ Acceleration of the order of convergence of a family of fractional fixed-point methods and its implementation in the solution of a nonlinear algebraic system related to hybrid solar receivers
- ↑ Code of a multidimensional fractional quasi-Newton method with an order of convergence at least quadratic using recursive programming
- ↑ Sets of Fractional Operators and Some of Their Applications
- ↑ Einstein summation for multidimensional arrays
Bibliografía adicional
editar- Abramowitz, Milton; Stegun, Irene A. (1970), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (en inglés), New York: Dover Publications, Ninth printing.
- Thomas, George B., Jr.; Finney, Ross L. (1996), Calculus and Analytic Geometry (en inglés) (9th edición), Addison Wesley, ISBN 0-201-53174-7.
- Greenberg, Michael (1998), Advanced Engineering Mathematics (en inglés) (2nd edición), Prentice Hall, ISBN 0-13-321431-1, (requiere registro).
Enlaces externos
editar- Weisstein, Eric W. «Serie de Taylor». En Weisstein, Eric W, ed. MathWorld (en inglés). Wolfram Research.
- Madhava of Sangamagramma
- Taylor Series Representation Module by John H. Mathews
- "Discussion of the Parker-Sochacki Method Archivado el 2 de diciembre de 2005 en Wayback Machine."
- Another Taylor visualisation - where you can choose the point of the approximation and the number of derivatives
- Taylor series revisited for numerical methods at Numerical Methods for the STEM Undergraduate
- Cinderella 2: Taylor expansion
- Taylor series
- Inverse trigonometric functions Taylor series