Partición de un intervalo

(Redirigido desde «Particion de un intervalo»)

En matemáticas, una partición Π de un intervalo cerrado [a, b] en los números reales es una secuencia finita de la forma

Diagrama de la función y de los rectángulos de suma de Riemann.
a = x0 < x1 < x2 <... < xn = b.

Estas particiones se utilizan en la teoría de la integral de Riemann y la integral de Riemann-Stieltjes.

Refinamiento de una partición

editar

Se dice que una partición Π' es más fina que una partición Π cuando Π es un subconjunto de Π', es decir, cuando la partición Π' tiene los mismos puntos que Π y posiblemente alguno más.

Ejemplos

editar

Un ejemplo de partición sería el siguiente:

Dado el intervalo [1, 2], una partición de dicho intervalo sería

Π = { }.

Otra posible partición para el mismo intervalo sería

Π' = { }, con Π' más fina que Π.

Véase también

editar