Número construible
En matemáticas, un número construible es aquel que puede representarse mediante finitas operaciones de sumas, restas, multiplicaciones, divisiones y raíz cuadrada de enteros. Tales números corresponden a los segmentos que se pueden construir con regla y compás.[1][2]
Todos los números racionales son construibles, y todos los números construibles son números algebraicos.[3] Puede demostrarse que un número real r es construible si y solo si, dado un segmento de longitud unitaria, un segmento de longitud |r| puede construirse con regla y compás.[4]
Caracterización
editarLos números construibles forman la menor extensión de cuerpo cerrada bajo la raíz cuadrada y la conjugación de los números racionales.
El teorema de Wantzel proporciona las condiciones necesarias y suficientes para que un número sea construible.
Propiedades
editar- Dado que el conjunto de números algebraicos es numerable, se sigue inmediatamente que el conjunto de números construibles es numerable.
- El conjunto de números construibles (con regla y compás) es el menor cuerpo estable por la raíz cuadrada.
- Las raíces cuadradas son números construibles.
Ejemplos y contraejemplos
editar- es un número construible.
- no es construible.
- no es construible, puesto que no es algebraico sobre Q.
Referencias
editar- ↑ Weisstein, Eric W. «Número construible». En Weisstein, Eric W, ed. MathWorld (en inglés). Wolfram Research.
- ↑ A. Bogomolny. «Reduction: Constructible Numbers». Interactive Mathematics Miscellany and Puzzles (en inglés). Consultado el 22 de febrero de 2012.
- ↑ Courant and Robbins 1996, p. 133.
- ↑ John A. Beachy, William D. Blair; Abstract Algebra; Definition 6.3.1 Archivado el 6 de febrero de 2012 en Wayback Machine.