José Luis Rubio de Francia
José Luis Rubio de Francia (Miedes de Aragón, 17 de noviembre de 1949 – Madrid, 6 de febrero de 1988)[1] fue un matemático español.
José Luis Rubio de Francia | ||
---|---|---|
Información personal | ||
Nacimiento |
19 de noviembre de 1949 Miedes de Aragón (España) | |
Fallecimiento |
6 de febrero de 1988 Madrid (España) | (38 años)|
Nacionalidad | Española | |
Educación | ||
Educado en | Universidad de Zaragoza | |
Supervisor doctoral | Luis Vigil y Vázquez | |
Información profesional | ||
Ocupación | Matemático | |
Conocido por |
Teorema de extrapolación de Rubio de Francia Operador de Rubio de Francia Desigualdad de Littlewood–Paley-Rubio de Francia | |
Biografía
editarNacido en Miedes, su familia pronto se trasladó a Zaragoza.[2] Era hijo de un profesor de matemáticas y estuvo vinculado a la disciplina desde la adolescencia.[1] De 1966 a 1974 estudió en la universidad de Zaragoza, donde terminó doctorándose en análisis de Fourier bajo la supervisión de Luis Vigil y Vázquez.[3] Siguiendo sobre los pasos de su maestro se convirtió en un experto en análisis armónico abstracto,[4] haciendo importantes aportaciones sobre la convergencia de las series de Fourier.[4]
Tras su tesis pasó dos años en la Universidad de Princeton, profundizando en el campo bajo Elias Stein.[5][6] También conoció el trabajo de Córdoba Barba y Fefferman sobre desigualdades con pesos que sería otra gran influencia en su obra.[7] Continuó su carrera en España con un breve periodo en la Universidad Complutense,[8] dos años más en la de Zaragoza y finalmente una plaza de profesor en la Universidad Autónoma de Madrid.[1] Prosiguió en estos puestos su trabajo sobre análisis de Fourier, desarrollando las ideas de Marcel Riesz,[5] Bernard Maurey, Carleson-Hunt[5] y Calderón–Zygmund.[7] Otra notable influencia fue la conferencia de análisis armónico de 1978 donde conoció el teorema de Nikhisin, del que poco después logró una demostración más simple.[8][9]
Un notable logro de su trabajo fue demostrar que se podían obtener desigualdades con peso desde desigualdades vectoriales, invirtiendo el problema habitual en la teoría de Littlewood–Paley,[10][11] donde resolvió problemas de pesos de Muckenhoupt[11] en lo que se ha llamado algoritmo Rubio de Francia.[12][10] Ello le permitió también desarrollar otra elegante demostración del teorema de pesos de Jones[12] y acuñar el teorema de extrapolación de Rubio de Francia.[13] Logró igualmente probar la desigualdad de Littlewood–Paley, (llamada por ello a veces de Littlewood–Paley–Rubio de Francia), lo que abrió una línea de investigación sobre integrales singulares que continuó con sus alumnos.[14]
Fue el supervisor doctoral de otros matemáticos españoles como Javier Duoandikoetxea, que continuó el desarrollo de teorías que Rubio de Francia había aprendido en Princeton.[15] Rubio de Francia llegó a ser conocido como una de las principales referencias de las matemáticas en España y ganó el premio de la Real Academia de Ciencias de Madrid.[1] Muerto a temprana edad por una enfermedad, diversas sociedades académicas y científicas le rinden homenaje o tienen premios en su honor,[1] así como una calle en Zaragoza.
Referencias
editar- ↑ a b c d e Francisco J. Ruiz Blasco. «José Luis Rubio de Francia». En Real Academia de Historia, ed. Diccionario Biográfico Español. Consultado el 16 de diciembre de 2022.
- ↑ Córdoba, 1988, p. 1.
- ↑ García-Cuerva, 1991, p. 9.
- ↑ a b García-Cuerva, 1991, p. 10.
- ↑ a b c García-Cuerva, 1987, p. 4.
- ↑ Córdoba, 1988, pp. 2-3.
- ↑ a b Córdoba, 1988, p. 3.
- ↑ a b García-Cuerva, 1991, p. 11.
- ↑ Córdoba, 1988, p. 4.
- ↑ a b Córdoba, 1988, p. 7.
- ↑ a b García-Cuerva, 1987, p. 6.
- ↑ a b García-Cuerva, 1987, p. 7.
- ↑ García-Cuerva, 1987, pp. 8-9.
- ↑ García-Cuerva, 1987, pp. 9-10.
- ↑ García-Cuerva, 1987, p. 10.
Bibliografía
editar- Córdoba, Antonio (1988). «José Luis Rubio de Francia (1949–88). Semblanza de su vida y obra». Revista Matemática Iberoamericana 4 (1): 1-10.
- García-Cuerva, José (1987). «José Luis Rubio de Francia (1949-1988)». Collectanea Mathematica: 3-16.
- —— (1991). «The work of José Luis Rubio de Francia». Publicacions Matemàtiques (en inglés) 35 (1): 27-63.