Un hemicosaedro es un politopo abstracto regular, que contiene la mitad de las caras de un icosaedro regular.[1]

Hemicosaedro

Tipo decaedro, poliedro proyectivo y hemipoliedro Edit the value on Wikidata
Forma de las caras triángulo equilátero (10) Edit the value on Wikidata
Símbolo de Schläfli {3,5}/2 y {3,5}₅ Edit the value on Wikidata
Dual hemi-dodecaedro Edit the value on Wikidata
Elementos
Vértices 6
Aristas 15
Caras 10 Edit the value on Wikidata

Se puede realizar como un poliedro proyectivo (un teselado del plano proyectivo real mediante 10 triángulos), que se puede visualizar construyendo el plano proyectivo como un hemisferio en el que se conectan los puntos opuestos en el contorno, y dividiendo el hemisferio en tres partes iguales.

Geometría

editar

Posee 10 caras triangulares, 15 aristas y 6 vértices; y su característica de Euler es 1.

También está relacionado con un poliedro uniforme no convexo, el tetrahemihexaedro, que podría ser topológicamente idéntico al hemicosaedro si cada una de las 3 caras cuadradas se dividiera en dos triángulos.

Gráficos

editar

Se puede representar simétricamente en caras y vértices como un diagrama de Schlegel:

 
Centrado en caras

El gráfico completo K6

editar

Posee los mismos vértices y aristas que el 5-símplex de 5 dimensiones, que tiene un gráfico completo de aristas, pero solo contiene la mitad de las 20 caras.

Desde el punto de vista de la teoría de grafos, es un embebido de   (el grafo completo con 6 vértices) en el plano proyectivo real. Con esta incrustación, su grafo dual es el grafo de Petersen.

 
El grafo completo K6 representa los 6 vértices y 15 aristas del hemicosaedro

Véase también

editar

Referencias

editar
  1. McMullen, Peter; Schulte, Egon (December 2002), «6C. Projective Regular Polytopes», Abstract Regular Polytopes (1st edición), Cambridge University Press, pp. 162–165, ISBN 0-521-81496-0 .

Enlaces externos

editar