Función Xi de Riemann

En matemática, la la función Xi de Riemann es una variante de la función zeta de Riemann, y es definida así por la particularidad de tener una ecuación funcional simple. La función se llama así en honor a Bernhard Riemann.

Función xi de Riemann en el plano complejo. El color de un punto codifica el valor de la función. Colores fuertes denotan valores cercanos a cero y el tono codifica el valor del argumento.

Definición

editar

La función xi (minúscula) de Riemann está definida como:

 

La ecuación funcional (o fórmula de reflexión) para la función xi es

 

La función Xi (mayúscula) está definida como

 

y también obedece a la misma ecuación funcional.

Valores

editar

La fórmula general para enteros pares es

 

Por ejemplo:

 

Representación en forma de serie

editar

La función xi tiene la siguiente expansión en forma de serie:

 

Esta expansión juega particularmente un papel importante en el criterio de Li, en el cual declara que la hipótesis de Riemann es equivalente a tener   para todo número positivo n.

Hipótesis de Riemann

editar

Como se ha señalado por varios trabajos de Alain Connes y otros, la hipótesis de Riemann es equivalente a la afirmación de que la función xi de Riemann es el determinante funcional del operador

 

con

  así,


 ,

cuya conjetura está apoyada mediante varias evaluaciones numéricas.

Referencias

editar