Diseño de Filtros de Respuesta Finita al Impulso

Tipo de filtro digital

Diseño de filtros de Respuesta Finita al Impulso (del inglés: FIR) A respuesta finita del impulso (FIR) el filtro es un tipo de a filtro digital. respuesta del impulso, la respuesta del filtro a a Delta de Kronecker la entrada, es “finita” porque coloca a cero en un número finito de muestra intervalos. Esto está en contraste con respuesta infinita del impulso filtros que tienen regeneración interna y pueden continuar respondiendo indefinidamente. Un Nth filtro del FIR de la orden ticrimimal

s muestras N+1 en la duración.

Resumen de las características claves de los filtros FIR

editar
  1. El filtro FIR básico se caracteriza por
    Ec. 1  

    Ec. 2  
    en donde  ,   son los coeficientes de la respuesta impulso del filtro,   es la función de transferencia del filtro y   es el tamaño del filtro que es el número de coeficientes del filtro. Ec. 1 es la ecuación en diferencias para filtros FIR. Es una ecuación en el dominio del tiempo y describe al filtro FIR en la forma no recursiva, la muestra de salida actual,  , es una función solo de los valores del pasado y presente de la entrada  . Cuando los filtros FIR son implementados de esta forma, que es la evaluación directa de Ec. 1 son siempre estables. Ec. 2 es la función de transferencia del filtro. Provee un medio para analizar el filtro, por ejemplo evaluar la respuesta en frecuencia.
  2. Los filtros FIR pueden tener una respuesta exactamente de fase lineal.
  3. Los filtros FIR son muy fáciles de implementar, Todos los Procesadores DSP disponibles tienen arquitecturas que son apropiados para el filtrado FIR. Los filtros FIR no recursivos sufren menos los efectos de longitud de palabra que los filtros IIR. Los filtros FIR recursivos también existen y pueden ofrecer ventajas informáticas significativas.

Ejemplo de cálculo

editar

Considérese:
 
Si   representa el orden o tamaño de   entonces  
 
Si   representa el orden o tamaño de   entonces  
Entonces   se puede calcular como:
 
o como:
 

Se puede calcular así:  

 
 

 
 

 
 

 
 

 
 

 
 

 

calculando en la otra forma:  

 
 

 
 

 
 

 
 

 
 

 
 

 

Simetría y número de coeficientes

editar

Hay exactamente cuatro tipos de filtros FIR de fase lineal, dependiendo de si   es par o impar y si   tiene simetría positiva o negativa.

Resumen de los puntos claves de los cuatro tipos de filtros FIR de fase lineal
Simetría de
Respuesta
al Impulso
Número de
Coeficientes  
Respuesta en
Frecuencia  
Tipo de
Fase
Lineal
Simetría Positiva

 

Impar   1
Simetría Positiva

 

Par   2
Simetría Negativa

 

Impar   3
Simetría Negativa

 

Par   4


 
 
 

 

La respuesta en frecuencia de un filtro tipo 2 (simetría positiva y tamaño par) es siempre cero en   (mitad de la frecuencia de muestreo, ya que todas las frecuencias son normalizadas a la frecuencia de muestreo). Este tipo de filtro es inadecuado como filtros pasa altos. Los filtros de tipo 3 y 4 (ambos de simetría negativa) introducen un desplazamiento de fase de  . La respuesta en frecuencia es siempre cero en   haciéndolo inadecuado como filtros pasa bajos. Además, la respuesta del filtro 3 es siempre cero en   haciéndolo también inestable como filtro pasa altos. El tipo de filtro 1 es el más versátil de los cuatro. Los filtros de tipo 3 y 4 se usan frecuentemente para diseñar diferenciadores y transformadores de Hilbert, debido al desplazamiento de fase de   que cada uno provee.

Tipos de filtro según respuesta deseada al impulso

editar

Se usa el hecho de que la respuesta en frecuencia de un filtro   y la correspondiente respuesta al impulso,   se relacionan por la transformada inversa de fourier.  

El subíndice   se usa para distinguir entre las respuesta ideal al impulso y la respuesta deseada al impulso.

Diferentes respuestas al impulso ideales  .
Tipo de filtro  ,    
Pasa bajo    
Pasa alto    
Pasa banda    
Para banda    



  es el tamaño u orden del filtro.
 : Frecuencia de corte normalizada
 : Frecuencia de corte baja normalizada
 : Frecuencia de corte alta normalizada.

 

Especificaciones de filtros FIR

editar

Especificación de respuesta Magnitud Frecuencia para diferentes tipos de filtro.

 : Desviación o Rizo de pasabanda
 : Desviación o Rizo de parabanda
El Rizo pasabanda se expresa en decibelios como  
El Rizo parabanda se expresa en decibelios como  

 : Frecuencia borde de pasabanda
 : Frecuencia borde de parabanda

 : Frecuencia borde baja de parabanda
 : Frecuencia borde baja de pasabanda
 : Frecuencia borde alta de parabanda
 : Frecuencia borde alta de pasabanda

 

 

 

 
 

 

 

 

 
 

Método de las ventanas

editar

  es la respuesta al impulso del filtro diseñado, y se obtiene al multiplicar la respuesta al impulso deseada   con la función de ventana  
 
Las funciones ventana más habituales son: Rectangular, Hanning, Hamming, Blackman, de Kaiser

Nombre
función ventana
Ancho de Transición
(Hz) (normalizado)
Rizo (dB)
Pasabanda
Relación (dB)
lóbulo principal
lóbulos laterales
Atenuación (dB)
Máxima
Parabanda
función ventana
 ,  
Rectangular   0.7416 13 21 1
Hanning   0.0546 31 44  
Hamming   0.0194 41 53  
Blackman   0.0017 57 75  
Kaiser   0.000275 90  

De las funciones ventanas dispuestas en la tabla, se puede notar que:

  1. La ventana de Blackman tiene una fuerte atenuación en parabanda, pero para alcanzarla necesita una banda de transición mayor.
  2. La ventana de Hanning presenta una banda de transición menor, pero de igual forma su atenuación en la parabanda es menor.
  3. La ventana de Hamming es la más usada porque se puede obtener una atenuación considerable con una banda de transición estrecha.


 

Cálculo de Coeficientes

editar

A manera de ejemplo se calcularán los coeficientes para los cuatro filtros con los siguientes parámetros:
Frecuencia de 48000Hz
Filtro PasaBajo con Frecuencia de Corte 4000Hz
Filtro PasaAlto con Frecuencia de Corte 20000Hz
Filtro PasaBanda con Frecuencia Baja = 10000Hz, Frecuencia Alta = 14000Hz
Filtro ParaBanda con Frecuencia Baja = 2000Hz, Frecuencia Alta = 22000Hz
N = 9
Función ventana de Hamming
Se puede tener en cuenta que para la ventana de Hamming la Banda de Transición normalizada es:
 

Así la Banda de Transición en Hz será:
 
Este valor es mayor que el Ancho de Banda de los cuatro filtros que es de 4000Hz, además las frecuencias contiguas fuera del ancho de banda respectivo no serían atenuadas lo suficiente; para hacerlo habría de aumentarse el orden del filtro, reduciéndose así el ancho de transición.

Para diferenciar la respuesta al impulso   de los diferentes filtros, a esta se le agragará dos subíndices respectivamente así:
Filtro PasaBajo  
Filtro PasaAajo  
Filtro PasaBanda  
Filtro ParaBanda  

Coeficientes de la función ventana

editar

Los coeficientes para la ventana de Hamming serán:

   
-4  
-3  
-2  
-1  
0  
1  
2  
3  
4  

Filtro PasaBajo

editar

 
 

Recuerdese que para efectos de identificación:
 
 

     
-4    
-3    
-2    
-1    
0    
1    
2    
3    
4    

Filtro PasaAlto

editar

 
 

Recuerdese que para efectos de identificación:
 
 

     
-4    
-3    
-2    
-1    
0    
1    
2    
3    
4    

Filtro PasaBanda

editar

 
 
 
 

Recuerdese que para efectos de identificación:
 
 

     
-4    
-3    
-2    
-1    
0    
1    
2    
3    
4    

Filtro ParaBanda

editar

 
 
 
 

Recuerdese que para efectos de identificación:
 
 

     
-4    
-3    
-2    
-1    
0    
1    
2    
3    
4    

Comentarios finales

editar

En todo los procedimientos el valor de   ha comenzado con valores negativos como   y finalizado en  , pero para el cálculo de   el valor de   en   debe ser  . Para lo cual basta con sumarle   a  .
Si se tiene en cuenta para el ejemplo anterior que   entonces:
Para el filtro PasaBajo: 
Para el filtro PasaAlto: 
Para el filtro PasaBanda: 
Para el filtro ParaBanda: