Archivo:QHO-coherent3-amplitudesqueezed2dB-animation-color.gif

QHO-coherent3-amplitudesqueezed2dB-animation-color.gif (300 × 200 píxeles; tamaño de archivo: 308 kB; tipo MIME: image/gif, bucleado, 120 frames, 6,0s)

Resumen

Descripción
English: Animation of the quantum wave function of a squeezed coherent state in a Quantum harmonic oscillator with α=3 and 2dB of squeezing. The probability distribution is drawn along the ordinate, while the phase is encoded by color. The gaussian wave packet oscillates in position and width such that the amplitude is defined most sharply.
Fecha
Fuente Trabajo propio
 
Este GIF gráfico fue creado con Matplotlib.
Autor Geek3
Otras versiones QHO-coherent3-amplitudesqueezed2dB-animation.gif.gif

Source Code

The plot was generated with Matplotlib.


Python Matplotlib source code
#!/usr/bin/python
# -*- coding: utf8 -*-

from math import *
import matplotlib.pyplot as plt
from matplotlib import animation, colors, colorbar
import numpy as np
import colorsys
from scipy.interpolate import interp1d
import os, sys

# image settings
fname = 'QHO-coherent3-amplitudesqueezed2dB-animation-color'
plt.rc('path', snap=False)
plt.rc('mathtext', default='regular')
width, height = 300, 200
ml, mr, mt, mb, mh, mc = 35, 19, 22, 45, 12, 6
x0, x1 = -7,7
y0, y1 = 0.0, 1.0
nframes = 120
fps = 20

# physics settings
omega = 2 * pi
alpha0 = 3.0
xi0 = -0.2 * log(10) # 2dB of squeezing

def color(phase):
    hue = (phase / (2*pi) + 2./3.) % 1
    light = interp1d([0, 1, 2, 3, 4, 5, 6], # adjust lightness
                     [0.64, 0.5, 0.55, 0.48, 0.70, 0.57, 0.64])(6 * hue)
    hls = (hue, light, 1.0) # maximum saturation
    rgb = colorsys.hls_to_rgb(*hls)
    return rgb

def squeezed_coherent(alpha0, xi0, x, omega_t):
    # Definition of coherent states
    # https://en.wikipedia.org/wiki/Coherent_states
    alpha = alpha0 * e**(-1j * omega_t)
    xi = xi0 * e**(-2j * omega_t)
    r = np.abs(xi)
    tr = tanh(r)
    kk = (r - tr * xi) / (r + tr * xi)
    psi = (kk.real/pi)**0.25 * np.exp(-0.5j * omega_t # groundstate energy phase advance
                - 0.5 * ((x - sqrt(2) * alpha.real))**2 * kk # spread
                - 1j * alpha.imag * (alpha.real - sqrt(2) * x)) # displacement
    return psi

def animate(nframe):
    print str(nframe) + ' ',; sys.stdout.flush()
    t = float(nframe) / nframes * 1.0 # animation repeats after t=1.0
    
    ax.cla()
    ax.grid(True)
    ax.axis((x0, x1, y0, y1))
    
    x = np.linspace(x0, x1, int(ceil(1+w_px)))
    x2 = x - px_w/2.
    
    # Let's cheat a bit: add a phase phi(t)*const(x)
    # This will reduce the period from T=2*(2pi/omega) to T=1.0*(2pi/omega)
    # and allow fewer frames and less file size for repetition.
    # For big alpha the change is hardly visible
    psi = squeezed_coherent(alpha0, xi0, x, omega*t) * np.exp(-0.5j * omega*t)
    psi2 = squeezed_coherent(alpha0, xi0, x2, omega*t) * np.exp(-0.5j * omega*t)
    y = np.abs(psi)**2
    phase = np.angle(psi2)
    
    # plot color filling
    for x_, phase_, y_ in zip(x, phase, y):
        ax.plot([x_, x_], [0, y_], color=color(phase_), lw=2*0.72)
    
    ax.plot(x, y, lw=2, color='black')
    ax.set_yticklabels([l for l in ax.get_yticks() if l < y0+0.9*(y1-y0)])
    

# create figure and axes
plt.close('all')
fig, ax = plt.subplots(1, figsize=(width/100., height/100.))
bounds = [float(ml)/width, float(mb)/height,
          1.0 - float(mr+mc+mh)/width, 1.0 - float(mt)/height]
fig.subplots_adjust(left=bounds[0], bottom=bounds[1],
                    right=bounds[2], top=bounds[3], hspace=0)
w_px = width - (ml+mr+mh+mc) # plot width in pixels
px_w = float(x1 - x0) / w_px # width of one pixel in plot units

# axes labels
fig.text(0.5 + 0.5 * float(ml-mh-mc-mr)/width, 4./height,
         r'$x\ \ [(\hbar/(m\omega))^{1/2}]$', ha='center')
fig.text(5./width, 1.0, '$|\psi|^2$', va='top')

# colorbar for phase
cax = fig.add_axes([1.0 - float(mr+mc)/width, float(mb)/height,
                    float(mc)/width, 1.0 - float(mb+mt)/height])
cax.yaxis.set_tick_params(length=2)
cmap = colors.ListedColormap([color(phase) for phase in
                              np.linspace(0, 2*pi, height, endpoint=False)])
norm = colors.Normalize(0, 2*pi)
cbar = colorbar.ColorbarBase(cax, cmap=cmap, norm=norm,
                    orientation='vertical', ticks=np.linspace(0, 2*pi, 3))
cax.set_yticklabels(['$0$', r'$\pi$', r'$2\pi$'], rotation=90)
fig.text(1.0 - 10./width, 1.0, '$arg(\psi)$', ha='right', va='top')
plt.sca(ax)

# start animation
if 0 != os.system('convert -version > ' +  os.devnull):
    print 'imagemagick not installed!'
    # warning: imagemagick produces somewhat jagged and therefore large gifs
    anim = animation.FuncAnimation(fig, animate, frames=nframes)
    anim.save(fname + '.gif', writer='imagemagick', fps=fps)
else:
    # unfortunately the matplotlib imagemagick backend does not support
    # options which are necessary to generate high quality output without
    # framewise color palettes. Therefore save all frames and convert then.
    if not os.path.isdir(fname):
        os.mkdir(fname)
    fnames = []
    
    for frame in range(nframes):
        animate(frame)
        imgname = os.path.join(fname, fname + '{:03d}'.format(frame) + '.png')
        fig.savefig(imgname)
        fnames.append(imgname)
    
    # compile optimized animation with ImageMagick
    cmd = 'convert -loop 0 -delay ' + str(100 / fps) + ' '
    cmd += ' '.join(fnames) # now create optimized palette from all frames
    cmd += r' \( -clone 0--1 \( -clone 0--1 -fill black -colorize 100% \) '
    cmd += '-append +dither -colors 255 -unique-colors '
    cmd += '-write mpr:colormap +delete \) +dither -map mpr:colormap '
    cmd += '-alpha activate -layers OptimizeTransparency '
    cmd += fname + '.gif'
    os.system(cmd)
    
    for fnamei in fnames:
        os.remove(fnamei)
    os.rmdir(fname)

Licencia

Yo, titular de los derechos de autor de esta obra, la publico en los términos de las siguientes licencias:
GNU head Se autoriza la copia, distribución y modificación de este documento bajo los términos de la licencia de documentación libre GNU, versión 1.2 o cualquier otra que posteriormente publique la Fundación para el Software Libre; sin secciones invariables, textos de portada, ni textos de contraportada. Se incluye una copia de la dicha licencia en la sección titulada Licencia de Documentación Libre GNU.
w:es:Creative Commons
atribución
Este archivo se encuentra bajo la licencia Creative Commons Atribución 3.0 Unported.
Eres libre:
  • de compartir – de copiar, distribuir y transmitir el trabajo
  • de remezclar – de adaptar el trabajo
Bajo las siguientes condiciones:
  • atribución – Debes otorgar el crédito correspondiente, proporcionar un enlace a la licencia e indicar si realizaste algún cambio. Puedes hacerlo de cualquier manera razonable pero no de manera que sugiera que el licenciante te respalda a ti o al uso que hagas del trabajo.
Puedes usar la licencia que prefieras.

Leyendas

Añade una explicación corta acerca de lo que representa este archivo

Elementos representados en este archivo

representa a

Historial del archivo

Haz clic sobre una fecha y hora para ver el archivo tal como apareció en ese momento.

Fecha y horaMiniaturaDimensionesUsuarioComentario
actual21:29 10 oct 2015Miniatura de la versión del 21:29 10 oct 2015300 × 200 (308 kB)Geek3{{Information |Description ={{en|1=Animation of the quantum wave function of a squeezed coherent state in a Quantum harmonic oscillator with α=3 and 2dB of sq...

La siguiente página usa este archivo:

Uso global del archivo

Las wikis siguientes utilizan este archivo: